F1,F2分别是双曲线x2/a2-y2/b2=1的左右焦点,若双曲线上存在点A,使∠F1AF2=90
问题描述:
F1,F2分别是双曲线x2/a2-y2/b2=1的左右焦点,若双曲线上存在点A,使∠F1AF2=90
,且|AF1|=3|AF2|,则双曲线的离心率 A,√3/2.B,√5/2.C,√7/2.D,√10/2
答
双曲线上存在点A,使∠F1AF2=90º根据勾股定理|AF1|^2+|AF2|^2=|F1F2|²=4c^2∵|AF1|=3|AF2||AF1|-|AF2|=2a 【双曲线定义】∴|AF2|=a,|AF1|=3a∴9a^2+a^2=4c^2∴e^2=c^2/a^2=10/4∴e=√10/2选D...