已知数列{an}满足a1=3,且an+1-3an=3n,(n∈N*),数列{bn}满足bn=3-nan. (1)求证:数列{bn}是等差数列; (2)设Sn=a13+a24+a35+…+ann+2,求满足不等式1/128<SnS2n<1/4
问题描述:
已知数列{an}满足a1=3,且an+1-3an=3n,(n∈N*),数列{bn}满足bn=3-nan.
(1)求证:数列{bn}是等差数列;
(2)设Sn=
+a1 3
+a2 4
+…+a3 5
,求满足不等式an n+2
<1 128
<Sn S2n
的所有正整数n的值.1 4
答
(1)证明:由bn=3-nan得an=3nbn,则an+1=3n+1bn+1.代入an+1-3an=3n中,得3n+1bn+1-3n+1bn=3n,即得bn+1-bn=13.所以数列{bn}是等差数列.(6分)(2) 因为数列{bn}是首项为b1=3-1a1=1,公差为13等差数列,则bn=1+...