已知数列{an}满足a1=3,且an+1-3an=3n,(n∈N*),数列{bn}满足bn=3-nan. (1)求证:数列{bn}是等差数列; (2)设Sn=a13+a24+a35+…+ann+2,求满足不等式1/128<SnS2n<1/4

问题描述:

已知数列{an}满足a1=3,且an+1-3an=3n,(n∈N*),数列{bn}满足bn=3-nan
(1)求证:数列{bn}是等差数列;
(2)设Sn=

a1
3
+
a2
4
+
a3
5
+…+
an
n+2
,求满足不等式
1
128
Sn
S2n
1
4
的所有正整数n的值.

(1)证明:由bn=3-nan得an=3nbn,则an+1=3n+1bn+1.代入an+1-3an=3n中,得3n+1bn+1-3n+1bn=3n,即得bn+1-bn=13.所以数列{bn}是等差数列.(6分)(2) 因为数列{bn}是首项为b1=3-1a1=1,公差为13等差数列,则bn=1+...