求Lim n→∞ xn,设x1=根号2,x2=根号(2+根号2),… ,xn=√(2+√(2+…+√2)),(n重根号)

问题描述:

求Lim n→∞ xn,设x1=根号2,x2=根号(2+根号2),… ,xn=√(2+√(2+…+√2)),(n重根号)

先证明{xn}极限存在,然后再求lim n→∞ xn
首先证明{xn}单调增加:x2==√(2+√2)>√2=x1,若xn>xn-1,则有
xn=√(2+xn)>√(2+xn-1)=xn
有归纳法可知{xn}单调增加.
其次证明{xn}是有界变量:x1=√2