给定双曲线x^2-y^2/2 =1. 过点A(2,1)的直线与双曲线交于P1、P2,求线段P1P2的中点P的轨迹方程.详解啊
问题描述:
给定双曲线x^2-y^2/2 =1. 过点A(2,1)的直线与双曲线交于P1、P2,求线段P1P2的中点P的轨迹方程.详解啊
答
设P1(x1,y1),P2(x2,y2),线段P1P2的中点P(x,y),则x1^2-y1^2/2 =1,2^2-y2^2/2 =1,两式相减得:(x1+x2)(x1-x2)-(y1+y2)(y1-y2)/2=0,∵x1+x2=2x,y1+y2=2y,∴2x(x1-x2)- 2y(y1-y2)/2=0,(y1-y2)/ (x1-x2)=2x/y....