已知函数f(x)=x^2-2mx+2-m,若不等式f(x)大于等于-mx在R上恒成立,求实数m的取值范围
问题描述:
已知函数f(x)=x^2-2mx+2-m,若不等式f(x)大于等于-mx在R上恒成立,求实数m的取值范围
设函数f(x)在[0,1]上最小值为g(m),求g(m)的解析式及g(m)=1时函数(m)的值
答
x²-2mx+2-m≧-mx
x²-mx+2-m≧0 在R上恒成立
则△≦0
m²-4(2-m)≦0
解得:-2-2√3≦m≦-2+2√3
注:字数有限制,重开一贴吧