若x2+xy+y2=1且x、y∈R,则n=x2+y2的取值范围是(  ) A.0<n≤1 B.2≤n≤3 C.n≥2 D.23≤n≤2

问题描述:

若x2+xy+y2=1且x、y∈R,则n=x2+y2的取值范围是(  )
A. 0<n≤1
B. 2≤n≤3
C. n≥2
D.

2
3
≤n≤2

x2+xy+y2=1,
∴xy=1-(x2+y2),

x2+y2
2
≤-|xy|≤xy≤|xy|≤
x2+y2
2

x2+y2
2
≤1-(x2+y2)≤
x2+y2
2
,得出
2
3
≤x2+y2≤2.
故选D