设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知数列{bn}的公比为q(q>0)

问题描述:

设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知数列{bn}的公比为q(q>0)
a1=b1=1,S5=45,T3=a3-b2.
(1)求数列{an}{bn}的通项公式;
(2)求q/a1a2+q/a2a3+...+q/an(an+1)

(1)S5=5a1+10d=5+10d=45,d=4,a3=1+2d=9.
T3=b1+b2+b3=1+q+q^2=9-q,则q=-4或q=2.
因为q>0,所以q=2.
{an}的通项公式为:an=1+4(n-1)=4n-3
{bn}的通项公式为:bn=2^(n-1)
其中n是正整数.
(2)q/a1a2+q/a2a3+...+q/an(an+1)
=(1/2)[1-1/5+1/5-1/9+…+1/(4n-3)-1/(4n+1)]
=(1/2)[1-1/(4n+1)]
=2n/(4n+1)