如图,在直角坐标系中,△ABC满足,∠C=90°,AC=4,BC=2,点A、C分别在x、y轴上,当A点从原点开始在x轴正半轴上运动时,点C随着在y轴正半轴上运动. (1)当A点在原点时,求原点O到点B的距
问题描述:
如图,在直角坐标系中,△ABC满足,∠C=90°,AC=4,BC=2,点A、C分别在x、y轴上,当A点从原点开始在x轴正半轴上运动时,点C随着在y轴正半轴上运动.
(1)当A点在原点时,求原点O到点B的距离OB;
(2)当OA=OC时,求原点O到点B的距离OB.
答
当A点在原点时,AC在y轴上,BC⊥y轴,所以OB=AB=AC2+CB2=25;(2)当OA=OC时,△OAC是等腰直角三角形AC=4,OA=OC=22.过点B作BE⊥OA于E,过点C作CD⊥OC,且CD与BE交于点D,∵∠2+∠ACD=90°,∠3+∠ACD=90°,∴∠2=...