设f(x)是定义在[-1,1]上的奇函数,且对任意的a,b∈[-1,1],当a+b≠0时,都有f(a)+f(b)a+b>0.(1)若a>b,试比较f(a)与f(b)的大小;(2)解不等式f(x−1/2)<f(x−1/4);(3)如果g(x)

问题描述:

设f(x)是定义在[-1,1]上的奇函数,且对任意的a,b∈[-1,1],当a+b≠0时,都有

f(a)+f(b)
a+b
>0.
(1)若a>b,试比较f(a)与f(b)的大小;
(2)解不等式f(x
1
2
)
f(x
1
4
)

(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.

(1)设-1≤x1<x2≤1,由奇函数的定义和题设条件,得
f(x2)-f(x1)=f(x2)+f(-x1)=

f(x2)+f(-x1)
x2+(-x1)
(x2-x1)>0,
∴f(x)在[-1,1]上是增函数.
∵a,b∈[-1,1],且a>b,
∴f(a)>f(b).
(2)∵f(x)是[-1,1]上的增函数,
∴不等式f(x-
1
2
)
f(x-
1
4
)
等价于
-1≤x-
1
2
≤1
-1≤x-
1
4
≤1
x-
1
2
<x-
1
4
-
1
2
≤x≤
3
2
-
3
4
≤x≤
5
4
解得-
1
2
≤x≤
5
4

∴原不等式的解集是{x|-
1
2
≤x≤
5
4
}

(3)设函数g(x),h(x)的定义域分别是P和Q,
则P={x|-1≤x-c≤1}=x|c-1≤x≤c+1},
Q={x|-1≤x-c2≤1}={x|c2-1≤x≤c2+1}.
由P∩Q=∅可得c+1<c2-1或c2+1<c-1.
解得c的取值范围是(-∞,-1)∪(2,+∞).