已知a∈(0,2),直线l1:ax-2y-2a+4=0和直线l2:2x+a^2*y-2a^2-4=0与两坐标轴围成一个四边形,求此四边形的面积最小值,及此时a的值.

问题描述:

已知a∈(0,2),直线l1:ax-2y-2a+4=0和直线l2:2x+a^2*y-2a^2-4=0与两坐标轴围成一个四边形,求此四边形的面积最小值,及此时a的值.

这步好算的吧.L1与y轴交点为(0,2-a)L2与x轴交点为(2+a*a,0)L1与L2的交点为(2,2)通过切割可以知道,围成的四边形可以分成一个梯形和一个三角形,梯形的面积为(上底+下底)*高/2=(2-a+2)*2/2=4-a三角形的面积为底*...