已知过点A﹙0,7/3﹚,B﹙7,0﹚的直线l1与过点C﹙2,1﹚,D﹙3,k+1)的直线l2和两坐标轴围成的四边形内接于一个圆,求实数k的值.

问题描述:

已知过点A﹙0,

7
3
﹚,B﹙7,0﹚的直线l1与过点C﹙2,1﹚,D﹙3,k+1)的直线l2和两坐标轴围成的四边形内接于一个圆,求实数k的值.

∵过点A﹙0,

7
3
﹚,B﹙7,0﹚的直线l1与过点C﹙2,1﹚,D﹙3,k+1)的直线l2和两坐标轴围成的四边形内接于一个圆,
∴根据四点共圆的条件可知l1与l2是相互垂直,
即l1与l2对应的斜率满足k1•k2=-1,
7
3
-7
k+1-1
3-2
=-1

-
1
3
k
1
=-1
,解得k=3.