如图,矩形ABCD的对角线AC、BD相交于点O,过点C作BD的垂线与∠BAD的平分线相交于点E. 求证:AC=CE.

问题描述:

如图,矩形ABCD的对角线AC、BD相交于点O,过点C作BD的垂线与∠BAD的平分线相交于点E. 求证:AC=CE.

设AE与BD交于N∵四边形ABCD是矩形∴∠DAC=∠OCB=∠CBO,AC=BD∵AE平分∠BAD∴∠BAE=∠EAD=45°∵∠EAC=∠EAD-∠OAD=∠EAD-∠CBO=45°-∠CBO∵EM⊥BD∴∠CEA=90°-∠ENM=90°-∠ANB∵∠ANB=∠180°-∠BAM-∠ABN=180°-...∠BAM哪来的M是CE与BD的垂足,