已知f(x)=5cos²x+sin²x-(4根号3)sinxcosx(1)化简f(x)的解析式,并求f(x)的最小正周期(2)当x∈[-π/6,π/4]时,求f(x)的值域

问题描述:

已知f(x)=5cos²x+sin²x-(4根号3)sinxcosx
(1)化简f(x)的解析式,并求f(x)的最小正周期
(2)当x∈[-π/6,π/4]时,求f(x)的值域


f(x)=5*(1+cos2x)/2+(1-cos2x)/2-2√3sin2x
=2cos2x-2√3sin2x+3
=4[cos(2x)*(1/2)-sin(2x)*(√3/2)]+3
=4[cos(2x)cos(π/3)-sin(2x)sin(π/3)]+3
=4cos(2x+π/3)+3
(1) T=2π/2=π
(2) x∈[-π/6,π/4]
2x+π/3∈[0,5π/6]
cos(2x+π/3)∈[-√3/2,1]
所以 y∈[-2√3+3,7]

1

f(x) = 5cos²x + sin²x-4√3sinxcosx= 4cos²x + cos²x + sin²x - 2√3sin2x= 2(cos2x+1) + 1 - 2√3sin2x= -2√3sin2x+2cos2x+3= -4(sin2xcosπ/6-cos2xsinπ/6) + 3= -4sin(2x-π/6) + 3...