求1,3a,5a2,7a3,…(2n-1)an-1的前n项和.
问题描述:
求1,3a,5a2,7a3,…(2n-1)an-1的前n项和.
答
当a=1时,数列变为1,3,5,7,…,(2n-1),则Sn=
=n2.n[1+2(n−1)] 2
当a≠1时,有,
Sn=1+3a+5a2+7a3+…+(2n-1)an-1,①
aSn=a+3a2+5a3+7a4+…+(2n-1)an.②
①-②得Sn-aSn=1+2a+2a2+2a3+…+2an-1-(2n-1)an,
(1-a)Sn=1-(2n-1)an+2(a+a2+a3+a4+…+an-1)
=1-(2n-1)an+2•
a(1−an−1) 1−a
=1-(2n-1)an+
.2(1−an) 1−a
又1-a≠0,
∴Sn=
+1−(2n−1)an
1−a
.2(a−an) (1−a)2
综上,Sn=
.
n2,a=1
+1−(2n−1)an
1−a
,a≠12(a−an) (1−a)2