有关高数极限的问题 lim (1/x)^tanx
问题描述:
有关高数极限的问题 lim (1/x)^tanx
答
1、(3x 2)/(3x-2)=1 4/(3x-2)
3x=[(3x-2)/4]*4 2
由常用极限lim (1 1/x)^x=e(e=2.718281827……)知
lim [(3x 2)/(3x-2)]^3x
=lim {[1 4/(3x-2)]^[(3x-2)/4]}^4*[(3x 2)/(3x-2)]^2=e*1=e
2、由洛比达法则:对于0/0或者无穷大/无穷大型的极限
lim f(x)/g(x)=lim f'(x)/g'(x)所以
lim [sqrt(1 tanx)-sqrt(1 sinx)]/(3x^3)
=lim (tanx-sinx)/(3x^3)*lim 1/[sqrt(1 tanx) sqrt(1 sinx)]
=lim (cos-1)/(3x^2)*lim 1/[sqrt(1 tanx) sqrt(1 sinx)]lim sinx/x
=lim (-cosx)/6*0.5*1=-1/12
3、lim x(sin 1/x^2-cos 2x)=lim x(sin 1/x^2)-lim xcos2x
=lim x(sin 1/x^2)
答
相当于n^(1/n)n到正无穷的极限,我记得极限是=1
答
lim (1/x)^tanx根据等价无穷小简化成lim (1/x)^x 【x→0+】=lim 1/ x^x 对x^x取对数lnx^x,得xlnx,化成lnx / [1/x]洛必达法则:上下求导,分子1/x 分母-1/x^2结果= -x所以极限lnx^x= -x=0那么x^x的极限就是e^0=1所以li...