设A是(n≥2)阶方阵,A*是A的伴随矩阵.证明:(1)r(A*)=n的充分必要条件是r(A)=n(2)r(A*)=1的充要条件是r(A)=n-1(3)r(A*)=0的充要条件是r(A)<n-1
问题描述:
设A是(n≥2)阶方阵,A*是A的伴随矩阵.证明:
(1)r(A*)=n的充分必要条件是r(A)=n
(2)r(A*)=1的充要条件是r(A)=n-1
(3)r(A*)=0的充要条件是r(A)<n-1
答
1) r(A)=n等价于det(A)≠0等价于det(A*)=1等价于 A*可逆 等价于r(A*)=n
2)