用数列的极限证明,当n趋向于正无穷大时,(3n+1)/(4n-1)趋向于3/4.请用数列的极限的定义证明,
问题描述:
用数列的极限证明,当n趋向于正无穷大时,(3n+1)/(4n-1)趋向于3/4.
请用数列的极限的定义证明,
答
(3n+1)/(4n-1)
用最简单的方法就是上下同时除以n
得(3+1/n)/(4-1/n)
当n趋向于正无穷大时,1/n趋向于0,这是众所周知的
那么不就得到(3+0)/(4-0)=3/4了吗
答
(3n+1)/(4n-1)
=(3n-3/4+7/4)/(4n-1)
=3/4+7/4(4n-1)
所以当n趋向于无穷大时,4n-1趋向于无穷大,即7/4(n-1)趋向于0
所以极限为3/4
证明:
① 对任意 ε>0 ,
要使 |(3n+1)/(4n-1) - 3/4| 即只要满足:||(3n+1)/(4n-1) - 3/4|=|7/4(4n-1)|即只要:n > 1+7/ε 即可.
② 故存在 N = [1+7/ε] ∈N
③ 当 n>N 时,
④ 恒有:|(3n+1)/(4n-1) - 3/4| ∴ lim(n->∞) (3n+1)/(4n-1)= 3/4