已知命题p:存在x属于R,使得x^2-2ax+2a^2-5a+4=0;命题q:曲线x^2/3+y^2/a-3=1是双曲线.若"p或q"为真,"p且q"为假,求实数a的取值范围
问题描述:
已知命题p:存在x属于R,使得x^2-2ax+2a^2-5a+4=0;命题q:曲线x^2/3+y^2/a-3=1是双曲线.若"p或q"为真,"p且q"为假,求实数a的取值范围
答
x^2-2ax+2a^2-5a+4=0判别式:
(-2a)^2-4(2a^2-5a+4)
=-4a^2+20a-16
=-4(a^2-5a+4)
=-4(a-1)(a-4)
P为真,判别式≥0-4(a-1)(a-4)≥0,(a-1)(a-4)≤01≤a≤4
P为假,a4
Q为真,a-3