已知x,y都是正实数,求证:x3+y3≥x2y+xy2

问题描述:

已知x,y都是正实数,求证:x3+y3≥x2y+xy2

左-右=x^3+y^3-x^2y-xy^2=x^2(x-y)+y^2(y-x)=(x-y)(x^2-y^2)=(x-y)^2*(x+y)≥0
so 左 ≥ 右