Xn=[(n-1)/(n+1)]^n 求数列极限
问题描述:
Xn=[(n-1)/(n+1)]^n 求数列极限
答
Xn=[(n-1)/(n 1)]^n
=[1-2/(n 1)]^(-(n 1)/2)*(-2/(n 1))*n
底数趋于e,指数(-2n/(n 1))趋于-2
极限为e^(-2)
答
=lim﹛[1-2/﹙n+1﹚]^﹙n+1﹚/2﹜²/[1-2/﹙n+1﹚]=1/e²
答
lim [(n-1)/(n+1)]^n=lim [(n+1-2)/(n+1)]^n=lim [1+(-2)/(n+1)]^n=lim [1+(-2)/(n+1)]^(n+1-1)=lim [1+(-2)/(n+1)]^(n+1) * [1+(-2)/(n+1)]^(-1)=lim [1+(-2)/(n+1)]^(n+1) * lim [1+(-2)/(n+1)]^(-1)=lim [1+(-2)/...