设x、y、z是三个互不相等的数,且x+1/y=y+1/z=z+1/x,则xyz=_.
问题描述:
设x、y、z是三个互不相等的数,且x+
=y+1 y
=z+1 z
,则xyz=______. 1 x
答
由已知x+
=y+1 y
=z+1 z
,1 x
得出x+
=y+1 y
,1 z
∴x-y=
-1 z
=1 y
,y−z zy
∴zy=
①y−z x−y
同理得出:
zx=
②,z−x y−z
xy=
③,x−y z−x
①×②×③得x2y2z2=1,即可得出xyz=±1.
故答案为:±1.