如图,在⊙O中,AB为直径,弧CB等于弧CF,弦CG⊥AB,交AB于D,交BF于E.求证:BE=EC.

问题描述:

如图,在⊙O中,AB为直径,弧CB等于弧CF,弦CG⊥AB,交AB于D,交BF于E.求证:BE=EC.

证明:
连接BC,∵OB是半径,CG⊥AB,
∴弧BC=弧BG,
∵弧BC=弧CF,
∴弧CF=弧BG,
∵圆周角∠CBF对弧CF,圆周角∠BCG对弧BG,
∴∠CBF=∠BCG,
∴BE=CE.