如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F.(1)求证:DE是⊙O的切线;(2)若DE=3,⊙O的半径为5.求BF的长.

问题描述:

如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F.

(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5.求BF的长.

(1)证明:连接OD,BC,OD与BC相交于点G,∵D是弧BC的中点,∴OD垂直平分BC,∵AB为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线.(2)由(1)知:OD⊥BC,AC⊥BC,DE⊥...
答案解析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;
(2)在Rt△ABC中,运用勾股定理可求得AC的长度,运用切割线定理可将AE的长求出,根据△AED∽△ABF,可将BF的长求出.
考试点:切线的判定;勾股定理;圆周角定理;相似三角形的判定与性质.
知识点:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.