函数在闭区间[a,b]上连续,在开区间(a,b)内可导,f(a)=f(b)=0,证明至少有一点x在(a,b)内,
问题描述:
函数在闭区间[a,b]上连续,在开区间(a,b)内可导,f(a)=f(b)=0,证明至少有一点x在(a,b)内,
使得f(x)+X*f'(x)=0
答
令F(t)=tf(t)
则F'(t)=f(t)+tf'(t)
因为f(a)=f(b)=0,
所以F(a)=af(a)=0
F(b)=bf(b)=0
故由罗尔定理,至少有一点x在(a,b)内,使F'(x)=0,即f(x)+x*f'(x)=0