如图.已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=______,CnAn+1AnCn(其中n为正整数)=______.

问题描述:

如图.已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=______,

CnAn+1
AnCn
(其中n为正整数)=______.

∵Rt△ABC中,AC=3,BC=4,
∴AB=

AC2+BC2
=5,
∵CA1⊥AB,
∴CA1=
AC•BC
AB
=
12
5
,cos∠B=
AC
AB
=
4
5

∵A1C1⊥BC,
∴∠CA1B=∠A1C1B=90°,
∴∠CA1C1+∠A1CB=∠B+∠A1CB=90°,
∴∠CA1C1=∠B,
同理:∠AnCnAn+1=∠B,
∴cos∠AnCnAn+1=
CnAn+1
AnCn
=
4
5

故答案为:
12
5
4
5

答案解析:由Rt△ABC中,AC=3,BC=4,可求得AB的长,然后由CA1⊥AB,利用三角形的面积可得,直角三角形斜边上的高等于直角边相乘除以斜边,即可求得CA1的长,然后由三角形函数的性质,求得
CnAn+1
AnCn
(其中n为正整数)的值.
考试点:相似三角形的判定与性质.
知识点:此题考查了直角三角形的性质以及三角函数等知识.此题难度适中,注意得到∠AnCnAn+1=∠B是解此题的关键.