在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于G,求证:AE=BG.

问题描述:

在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于G,
求证:AE=BG.

作EH⊥BC于H,如图,
∵E是角平分线上的点,EH⊥BC,EA⊥CA,
∴EA=EH,
∵AD为△ABC的高,EC平分∠ACD,
∴∠ADC=90°,∠ACE=∠ECB,
∴∠B=∠DAC,
∵∠AEC=∠B+∠ECB,
∴∠AEC=∠DAC+∠ECA=∠AFE,
∴AE=AF,
∴EH=AF,
∵FG∥BC,
∴∠AGF=∠B,
在△AFG和△EHB中,

∠GAF=∠BEH
∠AGF=∠B
AF=EH

∴△AFG≌△EHB(AAS)
∴AG=EB,
即AE+EG=BG+GE,
∴AE=BG.
答案解析:作EH⊥BC于H,根据角平分线定理得到EA=EH,利用等角的余角相等得到∠B=∠DAC,根据三角形外角性质可推出∠AEC=∠B+∠ECB=∠DAC+∠ECA=∠AFE,则AE=AF,得到EH=AF,利用FG∥BC得到∠AGF=∠B,然后根据“AAS”可证得△AFG≌△EHB,再利用等量代换即可得到AG=EB.
考试点:全等三角形的判定与性质.

知识点:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了角平分线定理.