计算:1/1*3+1/3*5+1/5*7+1/7*9+……+1/97*99=
问题描述:
计算:1/1*3+1/3*5+1/5*7+1/7*9+……+1/97*99=
答
1/1*3+1/3*5+1/5*7+1/7*9+……+1/97*99=[1-1/3]/2 +[1/3-1/5]/2 +[1/5-1/7]/2 +.+[1/97-1/99]/2 =[1-1/3+1/3-1/5+1/5-1/7+...+1/97-1/99]/2=[1-1/99]/2=49/99