设平面内两向量a与b互相垂直,且ⅠaⅠ=2,ⅠbⅠ=1,又k与t是两个不同时为零的实数

问题描述:

设平面内两向量a与b互相垂直,且ⅠaⅠ=2,ⅠbⅠ=1,又k与t是两个不同时为零的实数
1 若x=a+(t-3)b与y=-ka+tb垂直,求k关于t的函数关系式k=f(t)
2 求函数k=f(t)的最小值

(1)x=a+(t-3)b与y=-ka+tb垂直,
所以,x*y=0(*代表点乘),
x*y=[a+(t-3)b]*[-ka+tb]=-k|a|^2+[-k(t-3)+t]a*b+t(t-3)|b|^2=0
因为|a|=2,|b|=1,a*b=0
所以,-4k+t^2-3t=0
即k=f(t)=(1/4)t^2-(3/4)t
(2)f(t)就是二次函数,当t=(3/4)/(2/4)=3/2时,
f(t)min=f(3/2)=-9/16