函数f(x)=[2sin(x+π/3)+sinx]cosx-根3sin^2x,(x∈R).
问题描述:
函数f(x)=[2sin(x+π/3)+sinx]cosx-根3sin^2x,(x∈R).
1)求函数f(x)的最小正周期
2)若存在x0∈[0,5π/12],使不等式f(x0)
数学人气:760 ℃时间:2019-08-20 04:04:28
优质解答
f(x)=[2sin(x+π/3)+sinx]cosx-根3sin^2x
=[sinx+(√3)cosx+sinx]cosx-(√3)(sinx)^2
=2sinxcosx+(√3)[(cosx)^2-(sinx)^2]
=sin2x+(√3)cos2x
=2sin(2x+π/3),(x∈R).
1)函数f(x)的最小正周期是π.
2)x0∈[0,5π/12],
∴2x0+π/3∈[π/3,7π/6],
∴f(x0)的最大值是2,
∴m的取值范围是(2,+∞).
我来回答
类似推荐
答
f(x)=[2sin(x+π/3)+sinx]cosx-根3sin^2x
=[sinx+(√3)cosx+sinx]cosx-(√3)(sinx)^2
=2sinxcosx+(√3)[(cosx)^2-(sinx)^2]
=sin2x+(√3)cos2x
=2sin(2x+π/3),(x∈R).
1)函数f(x)的最小正周期是π.
2)x0∈[0,5π/12],
∴2x0+π/3∈[π/3,7π/6],
∴f(x0)的最大值是2,
∴m的取值范围是(2,+∞).