设f(x)是定义在(-1,1)上的偶函数在(0,1)上增,若f(a-2)-f(4-a2)<0,则a的取值范围为______.
问题描述:
设f(x)是定义在(-1,1)上的偶函数在(0,1)上增,若f(a-2)-f(4-a2)<0,则a的取值范围为______.
答
∵f(x)是定义在(-1,1)上的偶函数
∴f(-x)=f(x)=f(|x|)
∵在(0,1)上增函数
∴
−1<a−2<1 −1<4−a2<1 |a−2|<|4−a2
解得a∈(
,2)∪(2,
3
)
5
故答案为:(
,2)∪(2,
3
)
5
答案解析:由f(x)是定义在(-1,1)上的偶函数,则有f(-x)=f(x)=f(|x|),再由函数是(0,1)上增函数,利用单调性定义求解.
考试点:奇偶性与单调性的综合.
知识点:本题主要通过奇偶性来转化区间,利用单调性来求解参数的范围问题,特别是偶函数时,转化为f(|x|),可避免讨论,同时在应用单调性时,一定要注意区间的限制.