设f(x)是定义在(-1,1)上的偶函数在(0,1)上增,若f(a-2)-f(4-a2)<0,则a的取值范围为______.

问题描述:

设f(x)是定义在(-1,1)上的偶函数在(0,1)上增,若f(a-2)-f(4-a2)<0,则a的取值范围为______.

∵f(x)是定义在(-1,1)上的偶函数
∴f(-x)=f(x)=f(|x|)
∵在(0,1)上增函数

−1<a−2<1
−1<4−a2<1
|a−2|<|4−a2

解得a∈(
3
,2)∪(2,
5
)

故答案为:(
3
,2)∪(2,
5
)

答案解析:由f(x)是定义在(-1,1)上的偶函数,则有f(-x)=f(x)=f(|x|),再由函数是(0,1)上增函数,利用单调性定义求解.
考试点:奇偶性与单调性的综合.
知识点:本题主要通过奇偶性来转化区间,利用单调性来求解参数的范围问题,特别是偶函数时,转化为f(|x|),可避免讨论,同时在应用单调性时,一定要注意区间的限制.