已知f(x)={2^x,(x≥4);f(x+1)(x

问题描述:

已知f(x)={2^x,(x≥4);f(x+1)(x

解log2(3)<log2(16)=4
故f(log2(3))=f(log2(3)+1)=f(log2(3)+log2(2))=f(log2(6))
而log2(6)<log2(16)=4
f(log2(3))=f(log2(6))=f(log2(6)+1)=f(log2(6)+log2(2))=f(log2(12))
而log2(12)<log2(16)=4
故f(log2(3))=f(log2(6))=f(log2(12))=f(log2(12)+1)=f(log2(24))
而log2(24)>log2(16)=4
故f(log2(3))=f(log2(6))=f(log2(12))=f(log2(24))
=2^(log2(24))
=24.

∵ log2(3)∈(1,2)∴ f(log2(3))=f(log2(3)+1)=f(log2(6))∵ log2(6)∈(2,3)=f(log2(6)+1)=f(log2(12))∵ log2(12)∈(3,4)=f(log2(12)+1)=f(log2(24)∵ log2(24)∈(4,5)=2^(log2(24))=24