数列{an}的前n项和为Sn,若Sn,an,3n成等差数列,则数列an的通项公式为

问题描述:

数列{an}的前n项和为Sn,若Sn,an,3n成等差数列,则数列an的通项公式为

Sn+3n=2anS(n-1)+3(n-1)=2a(n-1)an=Sn-S(n-1)Sn-S(n-1)+3=2[an-a(n-1)]an+3=2an-2a(n-1)an-2a(n-1)=3an+3=2[a(n-1)+3]an+3是一个公比为2的等比数列an+3=(a1+3)2^(n-1)a1=3an+3=3*2^nan=3(2^n-1)