证明:对于任意的正整数n,有1/1*2*3+1/2*3*4+.+1/n(n+1)(n+2)
问题描述:
证明:对于任意的正整数n,有1/1*2*3+1/2*3*4+.+1/n(n+1)(n+2)
答
因为1/[n(n+1)(n+2)]=1/2{1/n-1/(n+1)-1/(n+2)}
所以原等式=1/2{1-1/(n+1)-1/(n+2)}所以原不等式成立。
答
黑糊糊黑糊糊黑糊糊后
答
证明:设数列{an},an=1/n(n+1)(n+2),则an=1/2{[1/n-1/(n+1)]-[(1/n+1)-1/(n+2)]},得1/1*2*3+1/2*3*4+.+1/n(n+1)(n+2)=a1+a2+……+an=1/2[(1-1/2)-(1/2-1/3)]+1/2[(1/2-1/3)-(1/3-1/4)]+……+1/2{[1/n-1/(n+1)]-[(1/n...