抛物线的顶点在原点,以x轴为对称轴,经过焦点且倾斜角为135°的直线被抛物线所截得的弦长为8,试求抛物线方程.

问题描述:

抛物线的顶点在原点,以x轴为对称轴,经过焦点且倾斜角为135°的直线被抛物线所截得的弦长为8,试求抛物线方程.

如图所示,依题意,设抛物线方程为y2=2px,则直线方程为y=-x+12p.设直线交抛物线于A(x1,y1)、B(x2,y2)两点,过A、B分别作准线的垂线,垂足分别为C、D.则由抛物线定义得|AB|=|AF|+|FB|=|AC|+|BD|=x1+p2+x2+p2...
答案解析:依题意,设抛物线方程为y2=2px,可求得过焦点且倾斜角为135°的直线方程为y=-x+

1
2
p,利用抛物线的定义结合题意可求得p,从而可求得抛物线方程;同理可求抛物线方程为y2=-2px时的结果.
考试点:抛物线的标准方程.
知识点:本题考查抛物线的标准方程,突出抛物线定义得应用,考查方程组思想与化归思想的综合运用,考查分析与运算能力,属于中档题.