已知定义在(-1,1)上的奇函数f(x)也为减函数,且f(1-a)+f(1-2a)>0,求a的取值范围.

问题描述:

已知定义在(-1,1)上的奇函数f(x)也为减函数,且f(1-a)+f(1-2a)>0,求a的取值范围.

由f(1-a)+f(1-2a)>0,得f(1-a)>-f(1-2a),
又∵f(x)在(-1,1)上为奇函数,
∴-f(1-2a)=f(2a-1),且-1<1-2a<1…①,
∴f(1-a)>f(2a-1),
又∵f(x)是定义在(-1,1)上的减函数,
∴1-a<2a-1且-1<1-a<1…②,
联解①②,得

2
3
<a<1,
所以实数a的取值范围为(
2
3
,1).