求由方程y^2/x+y=y^2-x^2所确定的函数在点(0,1)处的导数.
问题描述:
求由方程y^2/x+y=y^2-x^2所确定的函数在点(0,1)处的导数.
答
y^2/(x+y)=y^2-x^2
y^2=(y^2-x^2)(x+y)
两边同时求导得到:
2yy’=(2yy’-2x)(x+y)+(y^2-x^2)(1+y’)
2yy’=2yy’(x+y)-2x(x+y)+y’(y^2-x^2)+y^2-x^2
y’[2y-2y(x+y)-(y^2-x^2)]=y^2-x^2-2x(x+y)
y’(2y-2xy-2y^2-y^2+x^2)=y^2-x^2-2x^2-2xy
y’(2y-2xy-3y^2+x^2)=(y^2-2xy-3x^2)
y’=(y^2-2xy-3x^2)/ (2y-2xy-3y^2+x^2)
当x=0,y=1,代入得到:
y’=(1-0-0)/(2-0-3+0)=-1
所以切线方程为:
y-1=-1*(x-0)
即:y+x-1=0.