已知向量a=(cos(-θ),sin(-θ)),b=(cos(π/2-θ),sin(π/2-θ))已知向量a=(cos(-θ),sin(-θ)),b=(cos(π/2-θ),sin(π/2-θ) (1)求证:a⊥b (2)若存在不等于0的实数k和t,使x=a+(t^2+3)b,y=-ka+tb,满足x⊥y,试求此时(k+t^2)/t的最小值
问题描述:
已知向量a=(cos(-θ),sin(-θ)),b=(cos(π/2-θ),sin(π/2-θ))
已知向量a=(cos(-θ),sin(-θ)),b=(cos(π/2-θ),sin(π/2-θ) (1)求证:a⊥b (2)若存在不等于0的实数k和t,使x=a+(t^2+3)b,y=-ka+tb,满足x⊥y,试求此时(k+t^2)/t的最小值
答
1)证明:a·b=cos(-θ)cos(π/2-θ)+sin(-θ)sin(π/2-θ)=cos(-θ-(π/2-θ))=cos(π/2)=0且a,b均不为零向量所以a⊥b2)解:因为x⊥y所以x·y=-ka^2+t(t^2+3)b^2=-k+t(t^2+3)=0k=t(t^2+3)(k+t^2)/t=t^2+t+3,当t=-1/2时...