设函数f(x)=2x^3+3ax^2+3bx+8c在x=1及x=2取得极值(1)f(x)增区间(2)若对x属[0,3】都有f(x)<c^成立,求c的范围

问题描述:

设函数f(x)=2x^3+3ax^2+3bx+8c在x=1及x=2取得极值(1)f(x)增区间(2)若对x属[0,3】都有f(x)<c^成立,
求c的范围

f‘(x)=6x^2+6ax+3b
f'(1)=6+6a+3b=0
f'(2)=24+12a+3b=0
得a=3 b=8
当x属于(-无穷,1)U(2,+无穷)函数为增函数
当x属于(1,2)函数为减函数
所以增区间为(-无穷,1)U(2,+无穷)
(2)

f(x)=2x^3+3ax^2+3bx+8c,求导f(x)'=6x^2+6ax+3b,又,在x=1与x=2取到极值,故f(x)'=k(x-1)(x-2)=6x^2+6ax+3b,得到 kx^2-3kx+2k=6x^2+6ax+3b,比较系数,得:k=6,-3k=6a,2k=3b故,a=-3,b=4.所以f(x)=2x^3-9x^2+12x+8c——(...