向量a=(sinx,1)b=(cosx,-1/2),求f(x)=(a+b)*b在{-pai/2,0}上的值域具体点··要很具体··先来个过程!
问题描述:
向量a=(sinx,1)b=(cosx,-1/2),求f(x)=(a+b)*b在{-pai/2,0}上的值域
具体点··要很具体··先来个过程!
答
a+b=(sinx+cosx,1/2)
f(x)=(a+b)*b
=sinxcosx+cos^2x-1/4
=1/2sin2x+1/2cos2x+1/4
=根号2/2sin(2x+pai/4)+1/4
x∈(-pai/2,0)
2x∈(-pai,0)
2x+pai/4∈(-3pai/4,pai/4)
2x+pai/4=-pai/2时,f(x)有最小值=-根号2/2+1/4
2x+pai/4=pai/4时,f(x)有最大值3/4
答
f(x)=(a+b)·b=a·b+|b|^2=sinxcosx-1/2+cosx^2+1/4=sin(2x)/2+(1+cos(2x))/2-1/4=sin(2x)/2+cos(2x)/2+1/4=(√2/2)sin(2x+π/4)+1/4x∈(-π/2,0)即:2x+π/4∈(-3π/4,π/4)即:sin(2x+π/4)∈[-1,√2/2)故:(√2/2...