二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a:b:c=-1:2:3.其中正确的是(  )A. ①②B. ②③C. ③④D. ①④

问题描述:

二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a:b:c=-1:2:3.其中正确的是(  )
A. ①②
B. ②③
C. ③④
D. ①④

由二次函数图象与x轴有两个交点,∴b2-4ac>0,选项①正确;又对称轴为直线x=1,即-b2a=1,可得2a+b=0(i),选项②错误;∵-2对应的函数值为负数,∴当x=-2时,y=4a-2b+c<0,选项③错误;∵-1对应的函数值为0,∴...
答案解析:由二次函数图象与x轴有两个交点,得到根的判别式大于0,可得出选项①正确;由二次函数的对称轴为直线x=1,利用对称轴公式列出关系式,化简后得到2a+b=0(i),选项②错误;由-2对应的函数值为负数,故将x=-2代入抛物线解析式,得到4a-2b+c小于0,选项③错误;由-1对应的函数值等于0,将x=-1代入抛物线解析式,得到a-b+c=0(ii),联立(i)(ii),用a表示出b及c,可得出a:b:c的比值为-1:2:3,选项④正确,即可得到正确的选项.
考试点:二次函数图象与系数的关系.
知识点:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符合由抛物线的开口方向决定;c的符合由抛物线与y轴交点的位置确定;b的符合由对称轴的位置与a的符合决定;抛物线与x轴的交点个数决定了根的判别式的符合,此外还有注意二次函数图象上的一些特殊点,比如1,-1或2对应函数值的正负.