已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).(1)求二次函数的解析式;(2)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移______个单位.
问题描述:
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移______个单位.
答
(1)由已知,有
,即
4a+2b−3=−3 a−b−3=0
,解得
4a+2b=0 a−b=3
a=1 b=−2
∴所求的二次函数的解析式为y=x2-2x-3.
(2)∵-
=1,b 2a
=-4.4ac−b2
4a
∴顶点坐标为(1,-4).
∵二次函数的图象与x轴只有一个交点,
∴应把图象沿y轴向上平移4个单位.
答案解析:(1)将A(2,-3),B(-1,0)代入y=ax2+bx-3,用待定系数法即可求得二次函数的解析式;(2)利用顶点坐标公式可求出图象沿y轴向上平移的单位.
考试点:待定系数法求二次函数解析式;二次函数图象与几何变换;抛物线与x轴的交点.
知识点:考查利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.二次函数的图象与x轴只有一个交点,即顶点的纵坐标为0.