已知函数f(x)=x²-2x,g(x)=ax+2(a>0),若任意x1属于【-1,2】,存在x2属于【-1,2】,使得f(x1)=g(x2),则实数 a的取值范围是A 0B 1/2C 0D a>=3

问题描述:

已知函数f(x)=x²-2x,g(x)=ax+2(a>0),
若任意x1属于【-1,2】,存在x2属于【-1,2】,使得f(x1)=g(x2),则实数 a的取值范围是
A 0B 1/2C 0D a>=3

1、x1属于【-1,2】,f(x)的范围为[-1,1]
2、当经2属于【-1,2】,a>0,f(x2)的范围为[-a+2,2a+2]
3、一定存在x2属于【-1,2】,使得f(x1)=g(x2),则-a+21
故a>=3