已知函数f(x)=(4x)/(3x^2+3),x属于[0,2].设a不等于0,函数g(x)=(1/3)ax^3 - (a^2)x,x属于[0,2].若对任意X1属于[0,2],总存在x2属于[0,2],使得f(x1)-g(x2)=0,求实数
问题描述:
已知函数f(x)=(4x)/(3x^2+3),x属于[0,2].设a不等于0,函数g(x)=(1/3)ax^3 - (a^2)x,x属于[0,2].若对任意X1属于[0,2],总存在x2属于[0,2],使得f(x1)-g(x2)=0,求实数a的取值范围.
答
由题意可知,“对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)-g(x2)=0”成立的充要条件为“函数g(x)=1/3 ax^3-a^2x(x∈[0,2])的值域为[0,2/3]的子区间”.
当a<0时,g'(x)= ax^2-a^2<0,函数g(x)=1/3 ax^3-a^2x,x∈[0,2]为减函数,且g(0)=0,所以,此种情况不成立.
当a>0时,令g'(x)= ax^2-a^2=0,得x^2=a,x=√a.由于g(0)=0,又函数g(x)=1/3 ax^3-a^2x(x∈[0,2])的值域为[0,2/3]的子区间,所以,g(x)在区间[0,2]上必为增函数,即必有√a≥2,得a≥4,且g(2)=8a/3-2a^2≤2/3.解得a≤1/3或a≥1.
综合知a≥4即为所求.错了,充要条件是[o,2/3]属于g(x)吧~ 但还是谢谢。