设{x=ln√(1+t^2),y=arctant,求 dy/dx及d^2·y/d·x^2

问题描述:

设{x=ln√(1+t^2),y=arctant,求 dy/dx及d^2·y/d·x^2

这是参数方程求导x'=t/(1+t^2)y'=1/(1+t^2)x''= [(1+t^2)-t*2t]/(1+t^2)^2=(1-t^2)/(1+t^2)^2y''=-2t/(1+t^2)^2dy/dx=y'/x'=1/td^2y/dx^2=(x'y''-x''y')/(x')^3=[-2t^2/(1+t^2)^3-(1-t^2)/(1+t^2)^3]/[t/(...