设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=______.

问题描述:

设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=______.


答案解析:先根据一元二次方程的解的定义得到m2+3m-7=0,则m2=-3m+7,代入m2+4m+n得到m+n+7,然后根据根与系数的关系得到m+n=-3,再利用整体代入的方法计算.
考试点:根与系数的关系;一元二次方程的解.
知识点:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-

b
a
,x1•x2=
c
a
.也考查了一元二次方程的解.