定义在R上的偶函数f(x)满足:对任意的x1,x2属于(-∞,0],X1≠X2,有(x2-x1)(f(x1)-f(x2))>0.当n属于N*时,为什么f(n-1)

问题描述:

定义在R上的偶函数f(x)满足:对任意的x1,x2属于(-∞,0],X1≠X2,有(x2-x1)(f(x1)-f(x2))>0.当n属于N*时,
为什么f(n-1)

因为f(x)为偶函数,所以f(-x)=f(x),所以f(-n)=f(n),所以要说明f(n-1)