定义R在偶函数y=f(x)满足f(x+1)=-f(x) 且当x∈[0,]时单调递增比较f﹙1/3﹚ f﹙-5﹚ f﹙5/2﹚的大小补充下是x∈[0,1]
问题描述:
定义R在偶函数y=f(x)满足f(x+1)=-f(x) 且当x∈[0,]时单调递增比较f﹙1/3﹚ f﹙-5﹚ f﹙5/2﹚的大
小
补充下是x∈[0,1]
答
且当x∈[0,]时单调递增 写清楚一点 具体范围是多少
答
f(x+1)=-f(x)
f(x)=-f(x-1),
所以f(x+1)=f(x-1),
即f(x)周期为2,
f﹙-5﹚=f(1),
f﹙5/2﹚=f(1/2),
因为当x∈[0,1]时单调递增,
所以f(1)>f(1/2)>f(1/3)
即 f(-5)>f(5/2)>f(1/3).