已知数列{an}中,a1=1,且点p(an,a(n+1))(n属于N)在直线x-y+1=0上,若函数f(n)=1/(n+a1)+1/(n+a2)+1/(n+a3)+…+1/(n+an)(n∈N,且n≥2),求函数f(n)的最小值;

问题描述:

已知数列{an}中,a1=1,且点p(an,a(n+1))(n属于N)在直线x-y+1=0上,若函数f(n)=1/(n+a1)+1/(n+a2)+1/(n+a3)+…+1/(n+an)(n∈N,且n≥2),求函数f(n)的最小值;

点p(an,a(n+1))(n属于N)在直线x-y+1=0上,an+1-an=1数列{an}中,a1=1.d=1所以an=a1+(n-1)*1=n∴f(n)=1/(n+a1)+1/(n+a2)+1/(n+a3)+…+1/(n+an)(n∈N,且n≥2)==>f(n)=1/(n+1)+1/(n+2)+1/(n+3)+…+1/(n+n)=1/(n+1)+1/...