f x=(x³+1)(2x²+8x-5)的导数

问题描述:

f x=(x³+1)(2x²+8x-5)的导数

f `(x)=(x³+1)(2x²+8x-5)
=(x³+1)`(2x²+8x-5)+(x³+1)(2x²+8x-5)`
=3x²(2x²+8x-5)+(x³+1)(4x+8)
=10x⁴ + 32x³ - 15x² + 4x + 8

ƒ(x) = (x³ + 1)(2x² + 8x - 5)
ƒ'(x) = (3x² + 0)(2x² + 8x - 5) + (x³ + 1)(4x + 8 - 0)
= 3x²(2x² + 8x - 5) + (x³ + 1)(4x + 8)
= 10x⁴ + 32x³ - 15x² + 4x + 8

f(x)=(x^3+1)(2x^2+8x-5)
f'(x)=(x^3+1)'(2x^2+8x-5)+(x^3+1)(2x^2+8x-5)'
=3x^2(2x^2+8x-5)+(x^3+1)(4x+8)
=6x^4+24x^3-15x^2+4x^4+8x^3+4x+8
=10x^4+32x^3-15x^2+4x+8