设e^(-x)是f(x)的一个函数,则∫xf(x)dx= A e^(-x) (1-x)+C B e^(-x) (1+x)+C C e^(-x) (x-1)+C D e^(-x) (x+1)+C
问题描述:
设e^(-x)是f(x)的一个函数,则∫xf(x)dx= A e^(-x) (1-x)+C B e^(-x) (1+x)+C C e^(-x) (x-1)+C D e^(-x) (x+1)+C
答
题目应该有点问题,应该是:设e^(-x)是f(x)的一个原函数,转化为求∫xf(x)dx=∫xe^(-x)dx的不定积分,答案B、D有一个也弄错,答案应该是 -(x+1)e^(-x) + C